趋势网(微博|微信|熊掌号):人脸识别技术在中国的发展起步于上世纪九十年代末,经历了五个阶段:技术引进、专业市场导入、技术完善、技术应用、各行业领域使用。本篇将介绍中国近些年在人脸识别技术上的发展,并分析2019年及以后的发展趋势。
一、全球生物识别细行业市场占比情况分析
生物识别指的是通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段相结合,利用人体固有的生理特性来进行个人身份鉴定技术。按不同的识别方式,生物识别可分为指 纹识别、虹膜识别、语音识别、静脉识别和人脸识别。
伴随着生物识别产品逐渐从单一的PC处理转变为分布式计算。用独立的前端独立设备来完成生物特征的采集、预处理、特征提取和比对,通过中心PC或服务器完成与业务相关的处理。随着生物特征识别技术的不断发展和提高,生物特征识别技术的应用场景不断拓展,预计2015-2020年全球生物识别细分行业复合增长率分别为:人脸识别复合增长率为167%;语音识别为100%;虹膜识别为100%;指 纹识别复合增长率为73%。
全球生物识别细行业市场占比情况
百雀羚回应网传化妆品涉嫌添加禁用原料 高三女生被灌醉后遭强奸致死 王宝强被举报涉嫌欺诈 2岁男童下楼买糖时被人拐走 浙江发生重大刑案当地组织搜山追凶
二、中国人脸识别技术发展情况分析
1、中国人脸识别行业发展历程
人脸识别技术在中国的发展起步于上世纪九十年代末,经历了技术引进-专业市场导入-技术完善-技术应用-各行业领域使用等五个阶段。其中,2014年是深度学习应用于人脸识别的关键一年,该年FaceBook发表一篇名为“DeepFace系统:达到肉眼级别的人脸识别系统”(翻译名),之后Face++创始人印奇团队以及香港中文大学汤晓鸥团队均在深度学习结合人脸识别领域取得优异效果,两者在LFW数据集上识别准确度均超过了99%,而肉眼在该数据集上的识别准确度仅为97.52%,可以说深度学习技术让计算机人脸识别能力超越人类的识别程度。
人脸识别与其他生物识别方式相比,优势在于自然性、不被察觉性等特点。自然性即该识别方式同人类进行个体识别时所利用的生物特征相同。指 纹识别、虹膜识别等均不具有自然性。不被察觉的特点使该识别方法不易使人抵触,而指 纹识别或虹膜识别需利用电子压力传感器或红外线采集指 纹、虹膜图像,在采集过程中体验感不佳。目前人脸识别需要解决的难题是在不同场景、脸部遮挡等应用时如何保证识别率。此外,隐私性和安全性也是值得考虑的问题。
2、3D人脸识别与2D人脸识别数据对比
目前,国内的人脸识别技术已经相对发展成熟,该技术越来越多的被推广到安防领域,延伸出考勤机、门禁机等多种产品,产品系列达20多种类型,可以全面覆盖煤矿、楼宇、银行、军队、社会福利保障、电子商务及安全防务等领域,人脸识别的全面应用时代已经到来。
中游人脸识别技术的进步,是推动下游场景应用拓展的关键所在。目前,人脸识别市场的解决方案主要包括2D识别、3D识别技术。市场上主流的识别方案是采用摄像头的2D方案,但由于人的脸部并非平坦,因此2D识别在将3D人脸信息平面化投影的过程中存在特征信息损失。3D识别使用三维人脸立体建模方法,可最大程度保留有效信息,因此3D人脸识别技术的算法比2D算法更合理并拥有更高精度。
3D人脸识别与2D人脸识别数据对比
人脸识别对场境要求非常强,产品能否达到实际使用要求,核心并不只在于算法本身,还在于对场景的深耕。算法水平对于识别率的有力证明,也仅仅是停留在训练集与测试集之间,存在于实验室的“理论数值”。
而现实生活中人脸的获取过程有大量不可控因素,光的方向、强度,是否有胡须、发型的变化,是否有表情都会影响识别效果。多种因素叠加后,真实环境下测得的准确率可能只有75%左右,甚至更低。
因此,需要针对场景的不同特点收集大量场景数据,不断调试参数、组合算法、方法,甚至使用外围硬件辅助以提升效果,不断迭代以实现产品化。除此之外,还要在工程上满足计算量、延迟、可维护性等需求。
3、我国人脸识别技术应用现状分析
如果说2014年是我国人脸识别技术的转折点,使人脸识别技术从理论走向了应用,那么2018年就是人脸识别技术全面应用的重要节点,“刷脸”时代正式到来。
从目前我国人脸识别技术的应用来看,主要集中在三大领域:金融、安防以及考勤/门禁。
我国人脸识别技术应用占比统计情况
4、中国人脸识别技术专利申请数量及国人脸识别专利公开数量情况分析
随着人脸识别技术的不断成熟,人脸识别技术逐渐被人们所熟知,同时,计算机、光学成像等相关技术的高速发展,人脸识别在各领域的应用不断拓展,人脸识别行业市场持续增长。数据显示,2017年中国人脸识别行业市场规模达到21.91亿元,随着人脸识别技术在各行业应用渗透的不断深入,预计2018年中国人脸识别市场规模将达到27.61亿元。
2015年以来,国家持续出台利好政策,为人脸识别技术在安防、医疗、金融等领域的应用打下了将坚实的基础。在政策支持力度明显加大的背景下,人脸识别技术热度不断提升,资本纷纷入局,一批明星企业快速崛起及人脸识别领域的大量投入,技术专利数量不断攀升。2014-2017年,中国人脸识别技术专利申请数量不断增长,年均增长36%。
2012-2017年中国人脸识别技术专利申请数量走势
公开专利数量来看,2012-2017年,我国人脸识别专利公开数量快速增长。2017年,我国人脸识别专利公开数量为2698项,达到近年来最大值。截至2018年7月,专利公开数量为2163项。伴随着技术实力的显著增强为国内市场打开,商业化产品的迅速普及打下了坚实的基础,预计中国人脸识别相关专利公开数量将持续稳定增长。
2012-2018年中国人脸识别专利公开数量走势
5、中国人脸识别市场规模情况分析
随着人脸识别技术的不断成熟,人脸识别技术逐渐被人们所熟知,同时,计算机、光学成像等相关技术的高速发展,人脸识别在各领域的应用不断拓展,人脸识别行业市场持续增长。数据显示,2017年中国人脸识别行业市场规模达到21.91亿元,随着人脸识别技术在各行业应用渗透的不断深入,预计2018年中国人脸识别市场规模将达到27.6亿元。
2012-2018年中国人脸识别市场规模走势
三、2019年中国人脸识别技术发展趋势分析
2018年,人脸识别技术在更多的领域解锁了更多应用,广东省、江苏省、浙江省、河北省、青岛市等地在2018年的高考期间均启用了人脸识别系统;北京大学将人脸识别技术应用到了校园入园人员身份验证领域;北京市人社局也计划在市级公租房将全部安装人脸识别系统,以预防公租房违规转租;滴滴在6月正式上线人脸识别系统……
从目前我国在人脸识别技术领域领先企业的应用布局来看,安防和金融是相对布局较多的领域,在物流、零售、智能手机、汽车、教育、地产、文娱广告等领域也均开始涉足。
从市场应用的角度来看,2019年将呈现如下发展趋势:
1、大数据与人脸识别的融合将进一步加深
随着人脸识别技术在公共安全、政府职能领域的纵向推进,尤其是在公安系统,利用人脸识别技术将海量照片数据利用起来,可以在很大程度上提升整个公安信息化的管理水平,目前深圳市公安系统已经在积极实践,预计2019年将会有更多的地区以及更多的领域将会积极探索大数据与人脸识别融合技术的应用。
2、3D人脸识别技术产品将逐步取代2D人脸识别技术产品
基于3D的人脸识别算法能够弥补2D投影造成有效识别信息丢失的问题,对于人脸旋转、遮挡、极度相似的传统难点具有很好的解决方式。2018年2月7日,人脸识别技术领先企业云从科技正式发布“3D结构光人脸识别技术”,标志着我国在3D人脸识别技术产品领域取得了重大进展。
3、安防仍是未来人脸识别技术应用的重要增长极
近年来,安防行业的迅速发展,为人脸识别应用提供了可以发挥的舞台;另一方面,随着人脸识别技术的进一步发展,为安防行业开拓了新的市场。智能视频分析将是大安防市场未来的方向之一,而人脸识别是其中非常重要的技术和应用。智能视频监控人脸识别系统是视频监控系统与人脸识别技术的有效结合,能大大提高安全防范能力,尤其是对犯罪分子起到强有力的震慑作用。
4、人脸识别技术在智能家居领域具有无限可能
随着现代科学技术的发展以及人民生活水平的提高,智能设备的普及率已经越来越高,住宅家居智能化将是一个重要的发展趋势。而人脸识别技术由于其便利性、安全性,可在智能家居中用作门禁系统以及鉴权系统,因此智能家居与人脸识别技术的融合是未来发展的重点方向。